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This paper presents a new approach for solution of 2D electromagnetic scattering using interpolating element-free galerkin
method with perfectly matched layers technique in order to limit the computational domain. The uniaxial perfectly matched layers
in cylindrical coordinates and the first-order Bayliss-Turkel absorbing aboundary conditions are used to limit the computational
domain. It is considered the TMz plane wave scattering by a z-infinite dielectric cylinder and the results obtained from proposed
technique are compared with analytical solution.
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I. INTRODUCTION

MESHLESS methods (MM) are a new class of numerical
methods that has been used for solution of partial

differential equations (PDE). It does not require a mesh
structure and the solution is obtained using only a cloud of
nodes spread throughout the region of interest. This feature
makes MM appropriate to deal with complex geometries and
inhomogeneities. These methods were firstly used to solve
problems related to structures and fluid mechanics. It recently
has been successfully applied in electromagnetic problems
[1], [2]. However, for solution of electromagnetic scattering,
differential equation based methods can not incorporate the
Sommerfeld radiation condition. Then it is necessary to extend
the discretization domain by establishing a fictitious boundary
at some distance away from the scatter, where this condition
is approximately imposed [1], [3], [4]. This process leads to
a significant increase of computational requirements. In order
to bring the fictitious boundary close to the scatter, fictitious
absorbers especially designed to have high attenuation and
zero reflection coefficient have been used in an approximation
called perfectly matched layers (PML) [5]. An improvement
of this approach, known as uniaxial PML (UPML) employs
anisotropic material properties to describe the absorbing layers.
These techniques have been successfully used with finite ele-
ment method (FEM) and finite difference time domain (FDTD)
for solving electromagnetic scattering [6].

Among the MM available in the literature, the interpolating
element-free Galerkin method (IEFG) is one of the most
investigated and used methods because of its robustness and
good convergence rates [7]. In this work IEFG and UPML
are combined and presented as a new method for solving 2D
electromagnetic scattering problems.

II. ELECTROMAGNETIC SCATTERING PROBLEM MODELING

The problem investigated in this work is the TMz plane wave
scattering by a z-directed infinitely long dielectric cylinder
Ω1 with relative electric permittivity εr, relative magnetic
permeability µr and surrounded by free space Ω2, as illustrated
in Fig. 1. So the 2D domain is Ω=Ω1∪Ω2 and Γ is the global
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Fig. 1. 2D scattering problem.

boundary in which the normal vector is n. The total electric
field Ez , which has only the z-component, is calculated by
the bi-dimensional scalar Helmholtz equation∇2Ez+k2

0Ez=0,
where k0 is the vacuum wave number [1].

The weak form of the problem, obtained using the method
of weighted residuals with test function w and the first-order
Bayliss-Turkel ABC applied to Γ, is [8].∫
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where γ=µ−1
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, q=µ−1

(
∇Eiz ·n + γEiz

)
and

Eiz is the incident electric field.

III. IEFG FORMULATION

In the IEFG approach, each node I is a point xI =(x, y) ∈ Ω
for which a shape function ΦI(xI) is associated. ΦI =0 for the
whole domain Ω, except a region near xI . Thus, the unknown
function can be approximated by [9]:

Ez(x) =
∑N

I=1
ΦI(xI)vI , (2)

where N is the number of nodes in Ω, xI and vI are unknown
coefficients of node I .

The IEFG uses the interpolant minimum least squares
(IMLS) approximation which makes EFG Kronecker delta
compatible. The coefficients vI are determined by minimizing
a weighted discrete L2 norm, with singular weight function
W (rI)=(rnI +βn)−1 [1], where β is a constant small enough
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to ensure no division by zero, n is a constant adjusted to
improve the result accuracy, rI = |x − xI |/dI , dI = αdC is
the support of the weight function, α is a scaling factor for the
influence domain and dC is the nodal radius [9].

IV. UNIAXIAL PML

The UPML approach uses anisotropic material properties to
describe the absorbing layers. Its main advantage is that it does
not require any modification of Maxwell’s equations [6].

In rectangular coordinate system, the material parameters
¯̄ε and ¯̄µ of the UPML region are an uniaxial tensor [6]. In
cylindrical coordinates, this tensor has the following form [10]:
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where s(ρ) = δ(ρ)[1+jη0σ(ρ)] and ρ̃= ρ0 +
∫ ρ
ρ0
s(ρ′)dρ′, with

δ(ρ)=1+δmax(ρ/L)m, σ(ρ)=σmax(ρ/L)m. L is the number of
layers in PML region, ρ0 is the first layer, ρ is the layer distance
to center, σmax, δmax and m are adjustable parameters.

In practical implementations of the UPML the absorbing
region must be truncated [6] using a PEC backing in the last
layer or by applying an ABC condition on the PML region
boundary. Here, the IEFG is used along with a first order
Bayliss-Turkel ABC applied to Γ.

V. NUMERICAL RESULTS

The proposed technique is applied for solving the electro-
magnetic scattering by a 0.3λ dielectric cylinder with relative
permittivity εr = 2 and the vacuum wavelength λ= 1m. The
numeric solution (NS) calculated by IEFG algorithm is checked
against the analytical solution (AS) by the following L2 norm
error over the whole domain Ω [1]:
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The PML parameters are set to σmax=1, amax=3 and m=5.
The algorithm is tested in two cases: number of layers L=10
and L= 20. The results – sampled in the diametrical a-b line
across Ω1 – are shown in Fig. 2 and Fig. 3.
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Fig. 2. Electric field magnitude

The achieved results show that, in both cases, the new
proposed approach presents a very good accuracy when com-
pared to the analytical solution. The L2 norm error in the
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Fig. 3. Electric field phase

first case, with a 10-layer PML, is EL2 = 1.62%, and for the
20-layer case is EL2 = 1.59%. The increase of layer number
leads to practically the same result. However, in this case the
computational cost is 30% higher.

VI. CONCLUSION

This paper presents a new numeric technique for the solution
of electromagnetic scattering. This technique is based on the
IEFG meshless method which implements the interpolant min-
imum least squares to provide a Kronecker delta compatible
method. The IEFG is coupled to the UPML method which is
applied in conjunction with a first order ABC to provide a
high performance domain limitation. The numeric results are
compared to the analytic ones by the L2 norm error.

Comparisons with other numerical methods and results for
other kinds of 2D scatters will be presented in the full version
of the paper.
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